
Kernel Latent Space Models for understanding neural connectomes 
Eric Jonas and Srini Turaga jonas@eecs.berkeley.edu turagas@janelia.hhmi.org 

It has now become possible to map the synaptic con-
nectivity of neural circuitry at the cellular resolution 
using electron microscopy [1]. In this work, we present 
a new class of models for the analysis of connectomic 
data. Many theories of neural computation propose 
speci�c patterns of neural connectivity tied to the 
tuning properties of neurons. We propose an extension 
to traditional latent space models  [2] to uncover con-
tinuous hidden structure in these connectomes, such 
as the neural tuning property of a neuron and the func-
tion that determines neural connectivity. Our scalable 
model provides the �exibility to recover structure in 
both directed and undirected graphs. We demonstrate 
our model on synthetic connectomes and on the re-
cently published mouse retinal connectome. 

Discrete Cell Types Via Block Models

Ranking loss
Modern connectomics methods can provide estimates of synaptic strength for 
both directed and undirected models, but the underlying (parametric) distribu-
tion of synapses is unknown.  We adopt a ranking loss function [6] to �t our con-
nectivity
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 Linear chain structured latent space and con-
nection matrix corresponding to a syn�re 
chain. Again, our latent-space embedding dis-
covers the 1-dimensional structure of the 
latent space, and the asymmetric, upper 
block-diagonal structure of the syn�re chain.

Ring-shaped latent space and connection matrix corre-
sponding to the classic ring attractor model for orienta-
tion tuning in visual cortex [5]. Our model accurately re-
covers the ring structured latent space from the connec-
tion matrix. Re-ordering the weight matrix using the 
latent structure reveals symmetric like-to-like connectivi-
ty preference.

Kernel functions can be asymmetric, 
non-monotonic, non-isotropic

Generative loss functions
We can explicitly model the probability of a connection via a parametric, genera-
tive function such as a Poisson distribution or via a Bernoulli-Logistic function. 
Finding the right parameteric form and hyperparameter sensitivity continue to be 
issues.  

Mouse Retina Connectome

Classic stochastic block [3] models assume each cell is 
a discrete [1...K] type and that cell-cell connection 
probabilities are a function of this latent type. 

Classic latent space models [2] assume that the proba-
bility of a connection between two cells as a function 
of their position in a continuous latent space. 

Great for modeling “communities” 
where  you have groups with a 
large number of intra-group con-
nections but fewer inter-group con-
nections. 

We can replace the Euclidean distance in a latent 
space model with an arbitrary kernel function. 

We can split the latent space into two di�erent spaces where the probability 
of connection is related to the distance between cell i in the �rst space and 
cell j in the second space.  

An asymmetric ring has each cell directionally connected to 
some of its neighbors in a consistent (here, clockwise) direc-
tion. By using a split 2D space with triplet loss, we can recov-
er the ring structure and the underlying link connectivity. 

The asymmetric block model assumes the existence of discrete latent types and 
connection probabilities depending solely on those types. By using a triplet loss 
and 2d split space embedding, we can recover the clustered cell types. 

We �t our non-convex models using stochastic gradient descent, using Theano for 
symbolic (exact) evaluation of the gradient. Adagrad is used when the stepsize 
could not otherwise be determined. 
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Nonparametric stochastic blockmodels have previously been 
successfully applied to the mouse retina connectome [4].

Dense serial electron microscopy of a $114um x 80 
um  area in the mouse retina [1] yielded a listing of 
places where neurons come into contact. There were 
over 1000 cells originally, and selected the 950 for 
which the location of the soma could be reconstruct-
ed . Ultimately this left a matrix between the total 
synapse-like contact area between all pairs of 950 
cells. Area was thresholded at 0.1um, determined by 
hand, to yield a 950x950 entry matrix that served as 
input to our algorithm.

Latent Embeddeding of Retina

Symmetric kernels privledge self-self connections over all others. This does not 
accurately model most neural circuits, so we turn to asymmetric kernls whose 
peak is o�set from zero. By braking the isotropy of kernel space, we allow for di-
rectionality and non-block-diagonal structure.  

We �t a D =8 latent kernel single-space model to the mouse  retina connectome 
with a symmetric rational quadratic kernel. The �rst two dimensions
recover the intralaminar spatial organization of cells in the retina. 
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This allows for both block diagonal (self )
connectivity as well as o�-diagonal, asymmetric 
connectivity. 
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Abstract

Assessing Model Fit
We can hold out connections from the 
training set and predict the missing 
connections and compute the area 
under the resulting precision-recall 
curve to assess model �t. 

Early results are promising. Our next goal is to try a wider variety 
of kernels and space con�gurations on real connectomes. While 
the triplet embedding has shown promise, we need better was 
of assessing model �t. 


